Publications

Kinetics of non-oxidative propane dehydrogenation on Cr2O3 and the nature of catalyst deactivation from first-principles simulations  

Autors: Matej Huš, Drejc Kopač, Blaž Likozar
Date: 03/03/2020

The paper evidences that non-oxidative dehydrogenation, although hitherto underutilised industrially, has been put forward as a viable and green alternative contributing in developing Circular Economy.

Link to pdf or website to buy it

Pre print version

Flux-Reducing Tendency of Pd-Based Membranes Employed in Butane Dehydrogenation Processes

Autors: by Thijs A. Peters*, Marit Stange and Rune Bredesen
Date: 16/10/2020

We report on the effect of butane and butylene on hydrogen permeation through thin state-of-the-art Pd–Ag alloy membranes. A wide range of operating conditions, such as temperature (200–450 °C) and H2/butylene (or butane) ratio (0.5–3), on the flux-reducing tendency were investigated.

Link to Open Access Article

First-Principles-Based Multiscale Modelling of Nonoxidative Butane Dehydrogenation on Cr2O3(0001)

Autors: by Drejc Kopač, Damjan Lašič Jurković, Blaž Likozar and Matej Huš

Date: 10/12/2020

Propane and butane are short straight-chain alkane molecules that are difficult to convert catalytically. Analogous to propane, butane can be dehydrogenated to butenes (also known as butylenes) or butadiene, which are used industrially as raw materials when synthesizing various chemicals (plastics, rubbers, etc.).

 

In this study, we present results of detailed first-principles-based multiscale modelling of butane dehydrogenation, which can be paralleled to experimental data.
We found that among all the dehydrogenation products 2-butene (CH3CHCHCH3) is the most abundant product of dehydrogenation, with selectivity above 90%, concluding that the dehydrogenation of butane is a viable alternative to conventional olefin production processes.

Link to Article

Ab Initio Multiscale Process Modeling of Ethane, Propane and Butane Dehydrogenation Reactions: A Review

Authors: Luka Skubic ,Julija Sovdat,Nika Teran,Matej Huš ,Drejc Kopač and Blaž Likozar

Date: 01/12/2020

Olefins are among the most important structural building blocks for a plethora of chemical reaction products, including petrochemicals, biomaterials and pharmaceuticals. An ever-increasing economic demand has urged scientists, engineers and industry to develop novel technical methods for the dehydrogenation of parent alkane molecules. In particular, the catalysis over precious metal or metal oxide catalysts has been put forward as an alternative way route to thermal-, steam- and fluid catalytic cracking (FCC).

In this review article, alkane dehydrogenation overview was presented in terms of multiscale modeling. We concentrated on ethane, propane, and butane dehydrogenation, presenting in a thorough manner the studies which focused on theoretical modeling. Theoretical understanding can often provide an insight into the catalyst nature, especially when the surface is decorated with metal dopants, or when the geometry is complex with steps, kinks, or different shapes. In such cases, in silico techniques can often provide order-of-magnitude estimates and trends that can be used to compare different materials, and to be used as a guide for the catalyst synthesis and the experimental setup.

The main conclusion is that for each alkane dehydrogenation process, there exist various catalysts, which show different performance. While Pt-based catalysts are most common among all processes, we find that other types are studied and provide different advancements in terms of cost, environmental issues, and/or catalytic performance such as selectivity, conversion, activity, degradation, etc. Another important aspect that we consider is whether the dehydrogenation process is oxidative or non-oxidative.

Link to Article